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Large collections of combinatorial libraries are an integral element in today’s pharmaceutical industry. It is
of great interest to perform similarity searches against all virtual compounds that are synthetically accessible
by any such library. Here we describe the successful application of a new software tool CoLibri on 358
combinatorial libraries based on validated reaction protocols to create a single chemistry space containing
over 1012 possible products. Similarity searching with FTrees-FS allows the systematic exploration of this
space without the need to enumerate all product structures. The search result is a set of virtual hits which
are synthetically accessible by one or more of the existing reaction protocols. Grouping these virtual hits by
their synthetic protocols allows the rapid design and synthesis of multiple follow-up libraries. Such library
ideas support hit-to-lead design efforts for tasks like follow-up from high-throughput screening hits or scaffold
hopping from one hit to another attractive series.

Introduction

In the pharmaceutical industry, high-throughput screening
(HTSa) of compound collections is frequently applied at the
beginning of a drug discovery program to detect novel hits.1–3

However, in many cases, HTS either fails to deliver any
promising hit or the identified hits cannot be turned into lead
compounds with desirable in vitro potency and selectivity.
Furthermore, only a fraction of the initial leads survive in the
further progress toward a candidate that makes it into clinical
development.4–6

To address this problem of attrition, Pfizer has embarked in
file enrichment (FE) programs in the past years to increase the
quality of its corporate compound collection.7–10 Enriching the
collection was realized through investing in technologies that
would make compound libraries larger, more chemically diverse,
and more druglike. Well-designed libraries should produce
higher quality compounds that will lead to an increase in the
overall hit rate. The ultimate goal is to reduce the attrition rate
for the resulting drug leads, thus increasing the overall efficiency
and productivity further downstream in the discovery program.6,11

It has been estimated that the number of compounds that span
the biologically relevant chemical space, that is, chemical
compounds used by biological systems, exceeds 1060 mole-
cules.12–15 The strategy of FE to explore this vast chemical space
efficiently has been to synthesize hundreds to a few thousand
analogues around chemotypes giving the highest probability of
covering the space and finding potential drug leads. To ensure
druglike quality of FE compounds, molecules were designed
to be rule-of-five compliant.16 Chemotypes were selected
focusing on maximum diversity, also by including structures
with novel (and proprietary) scaffolds, to a more target-specific

focus.17–19 In the latter case, the increasing amount of genomic,
proteomic, and structural data about druggable targets across
gene families has provided information about structurally
privileged scaffolds that can be used for the design of target-
associated focused chemical libraries.20–22

Besides screening the newly augmented FE compound
collection in an HTS campaign, it is also of great interest to
access and search in silico the full virtual FE library. This virtual
library is the collection of all possible compounds that can be
combinatorially enumerated by FE synthetic protocols and is
by several orders of magnitude larger than the real (synthesized)
FE collection. Virtual screening has become an established in
silico tool in drug discovery and is routinely used to identify
potential hits as starting points for lead identification in discovery
programs.23–28 Molecular similarity searching is the method of
choice when no information about the three-dimensional
structure of the target is available.29–33 Traditionally, similarity
searching is performed by using one or multiple query structures
and searching against a database of existing (or virtual)
molecules. A broad variety of molecular descriptors can be used;
the most prominent examples are structural keys34,35 and
molecule fingerprints36–38 indicating the presence or absence
of certain fragments or paths in the molecular graph, respec-
tively. The drawback to these methods is that each molecule to
be searched in the database has to exist as an explicit entity.
Usually, this is not a problem for searching corporate compound
collections or small combinatorial libraries which typically range
in the order of 105-108 molecules. But large combinatorial
libraries, especially collections thereof (such as the virtual FE
library mentioned above), easily exceed this range by several
orders of magnitude. Not only is it unfeasible to perform
similarity searches for more than 108 virtual compounds, but it
is often simply impractical to enumerate and store such large
numbers of molecules. Consequently, there has been an increas-
ing interest in computational methods recently to process large
virtual combinatorial libraries in different ways.39,40

The topomer concept was introduced and applied by Cramer
et al. to search virtual combinatorial libraries of 1013 molecules
based on seven generalized libraries as part of Tripos’ Chem-
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Space platform.41–43 Topomers are topologies of fragments from
which a virtual compound can be generated. The comparison
of topomers is achieved by examining the steric field properties
of their fragment conformations. During the search, a query
structure is split into fragments and the calculated steric fields
of each fragment are compared with precalculated fields for
fragments in the topomer library. Combining the similarity of
each individual fragment gives the overall similarity of the
virtual product molecules under consideration. The topomer
shape similarity searching approach was shown to be effective
for scaffold hopping in a number of cases considering the low
Tanimoto similarities of their corresponding fingerprints. There
are several notable differences between the topomer approach
and the approach presented here (FTrees-FS). First, topomer
search is a 3D method requiring the generation of 3D conforma-
tions of query and fragments as opposed to the purely topologi-
cal fingerprint used by FTrees-FS. Second, topomer search is
shape-based using the steric field of molecules, while the method
we describe focuses on matching similar physicochemical
features in a topologically plausible way. Third, with a topomer
search the query molecule is fragmented and the search is based
on fragment-to-fragment similarities, whereas FTrees-FS com-
pares the entire query molecule to the fragments in the chemistry
space for finding the best possible feature matches. Finally, while
the topomer approach is based on few generalized reactions,
the approach presented here constructs a chemistry space based
on several hundred specific reaction protocols of combinatorial
libraries.

Nikitin et al. constructed a large virtual diversity space of
1013 compounds derived from 400 combinatorial libraries
described in the literature.44 The original libraries were enriched
by adding larger collections of chemical reagents from vendor
catalogs. Their structure-based de novo design program gener-
ates candidate ligands within the time frame of several months.
In comparison, the ligand-based similarity searching approach
presented here requires only minutes to search.

Markush structure representations have been used by Barnard
et al. to analyze and cluster virtual combinatorial libraries.45

The internal Markush structure of a library is organized in a
logic tree, in which the nodes store the fragments of the library
and the edges indicate the logical and positional ways in which
the fragments are connected to provide the products. Analysis
of such Markush structures allows a more rapid generation of
descriptors, physicochemical properties, and fragment-based
fingerprints for the library products without enumerating them.
This very compact representation allows for rapid enumeration
and substructure searching. However, to the best of our
knowledge it is not suitable for similarity searching as presented
here.

FTrees-FS. New descriptors and comparison algorithms have
been realized in the similarity searching program Feature Trees
(FTrees)46 and its extension Feature Trees Fragment Spaces
(FTrees-FS),47 which is capable of handling and searching large
virtual combinatorial libraries without ever explicitly enumerat-
ing all possible product structures.

Originally, the program FTrees46,48 was developed to perform
similarity searches of query molecules against a database of
(real or virtual) compounds. For each molecule, a feature tree
descriptor is derived that captures all fragments and functional
groups of the molecular structure as nodes and how they are
linked to each other, thus defining the rough molecular topology
as a tree. Subsequently, a feature profile is computed for each
node in the tree that describes the physicochemical properties
of the respective fragment or functional group. Features such

as estimated volume, number of ring closures, donor, acceptor,
aromatic, and hydrophobic properties are calculated.

The similarity between two molecules is calculated by
comparing their associated feature trees by superposing (match-
ing) similar subtrees onto each other. The advantage of using
feature trees as descriptors for similarity searching is that they
are capable of preserving the topology and physicochemical
properties of the molecule. Since the underlying structural
scaffold of the molecule is disregarded, some degree of fuzziness
is introduced into the descriptor. This makes the method
particularly suitable for areas such as lead or scaffold hopping.49–58

The drawback to the FTrees method isssimilar to the traditional
search methods mentioned abovesthat only fully enumerated
molecular structures can be considered during the search, which
sets a limit to the number of compounds that can be stored and
searched in a database.

As a consequence, FTrees-FS47 was developed as an exten-
sion module to FTrees to perform similarity searches of large
combinatorial chemistry spaces. In such a chemistry space the
compounds represented by a combinatorial library are not stored
as enumerated molecular structures (product space), but rather
in the form of their building blocks and linkage rules (fragment
space). The efficiency of searching combinatorial libraries
encoded in their fragment space versus their product space can
be easily explained by the different numbers of molecules that
have to be compared during a similarity search. For instance,
if a two-component combinatorial library with 1000 monomers
(building blocks) each is searched in its enumerated form,
1000000 product structures need to be compared to a given
query. In contrast, only 2000 monomers have to be considered
in their corresponding fragment space. Extending this compari-
son to a large set of combinatorial libraries, the number of
products can easily reach in excess of 1012 possible virtual
products. Conducting the similarity search in the equivalent
fragment space reduces the number of molecules to be searched
to about 105 structures (Figure 1). This is even far less than the
number of compounds in typical corporate collections. Further-
more, FTrees-FS does not simply compare monomers but rather
generates products on-the-fly (based on a dynamic programming
algorithm) that are similar to the query molecule. The particular
nature of the feature tree descriptor allows the combination of
all possible subtrees (representing the fragments) with sufficient
similarity to successively larger subtrees and finally complete
feature trees (representing the products) without ever enumerat-
ing all product structures. During the dynamic search procedure
the selection and matching of subtrees is guided by locally
maximizing the similarity to the query molecule.

Figure 1. Comparison of similarity searches performed in product
space vs fragment space. The number of enumerated combinatorial
library products exceeds by far the number of compounds in corporate
databases. However, the number of unique fragments is smaller than
the number of molecules in the compound database. By searching in
fragment space, FTrees-FS is able to cover efficiently the vast space
of combinatorial chemistry space products.
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So far, FTrees-FS similarity searching has not been applied
to chemistry spaces derived from combinatorial chemistry
libraries, but rather to more generally defined chemistry
spaces.47,59 These latter types of chemistry spaces usually consist
of a few thousand fragments that can be combined based on a
rule set that represents a limited number of basic chemical
reactions. To build such a chemistry space, the retrosynthetic
combinatorial analysis procedure (RECAP)60 has been applied
to drugs from the World Drug Index (WDI)61 and other druglike
molecule collections. Applying a set of retrosynthetic rules, the
drug molecules are disconnected into their individual fragments,
and together with their associated link types they are incorpo-
rated into the chemistry space.47 This approach warrants a high
degree of diversity of possible virtual products by allowing a
large variety of fragments to be generated during the RECAP
fragmentation process.59 However, it comes at the expense of
the a priori unknown synthetic feasibility of the discovered
virtual hits since this type of chemistry space is not purely
combinatorial in nature. Molecules generated from such a space
contain a variable number of fragments and do not follow a
unique synthetic reaction scheme.

CoLibri. In this paper, we describe the development and
application of a new software tool CoLibri (Compound Library
Toolkit),62 which is capable of handling large numbers of
combinatorial libraries, processing them into a database of
fragments, and converting them into a single combinatorial
chemistry space. Once such a fragment space is assembled it
can be used for similarity searching with FTrees-FS. Figure 2
illustrates some of the most common virtual screening scenarios.
Typically, search queries are HTS hits, published compounds
from literature or patent applications, or hits from the real FE
compound collection. The result of the similarity search is a
set of virtual hits from the fragment space that are similar to
the search query. Some of these initial hits might already exist
as synthesized compounds, for example, as part of the FE
collection, or they can likely be made in a straightforward
manner using the synthetic protocols associated with the virtual
hits. Validated hits showing biological activity can be further
evaluated with additional hit follow-up libraries or optimized
in a hit-to-lead medicinal chemistry campaign.

In the following text, we first present validation experiments
to prove the feasibility of virtual screening in Pfizer’s combi-
natorial chemistry space based on FE library protocols. Then
we provide several application examples of similarity searches
within this chemistry space. In Materials and Methods, we
briefly highlight the strategy of computationally encoding
combinatorial libraries and creating chemistry fragment spaces
with CoLibri. Finally, in the Computational Appendix we
describe in detail the generation of a chemistry fragment space
using 358 combinatorial libraries based on FE reaction protocols.
We also provide more information about the functionality of
the CoLibri software.

Results and Discussion

The Pfizer chemistry fragment space consists of several
hundred combinatorial libraries and over 1012 possible products.
Within such a vast chemistry space it is difficult to assess the
overall quality and correctness of the products dynamically
generated during the FTrees-FS search. It is unfeasible to verify
that all fragments from the various library protocols are
connected properly according to a quite complex matrix of
compatibilities. Nonetheless, our goal was to ensure that during
the similarity search only valid product molecules are formed
according to their associated library protocols. Only then can
the identified virtual compounds be synthesized with high
likelihood by applying the associated reaction conditions to the
relevant building block monomers. Therefore, it was crucial for
us to put the fragment space through a comprehensive validation
before using it in real-life applications.

Validation of the Chemistry Fragment Space. Our ap-
proach to validate the accuracy of the chemistry fragment space
was to generate a sample set of virtual product structures
included in the combinatorial library collection. This was
accomplished by randomly selecting five sets of monomers per
protocol and connecting them according to their reaction scheme
to form five virtual products for each of the 358 reaction
protocols implemented in the chemistry space, resulting in 1790
virtual products in total. Each of these molecules successively
served as query for FTrees-FS similarity searches in the fragment
space. For each of the 1790 searches, the top 100 solutions with
the highest similarities were retrieved, together with their
respective rank and similarity score. A solution, which is a
virtual product identified in the fragment space, was considered
as a “hit” only if identical to the search query. We defined
identity not only in the sense of representing the same chemical
structure, but also if the product was annotated with the same
reaction protocol and monomers used as the search query. In a
best case scenario, for each of the five search queries of the
358 protocols such a hit would be identified as the top rank
with a similarity score of 1.0. The validation outcome shows
that for almost all (356 of 358) protocols at least three out of
five times a hit was identified, which corresponds to a retrieval
success rate of 99%.

Next, we inspected the rank distribution of the detected hits
among the top 100 solutions captured for each search query. A
total of 1210 out of 1418 hits were found among the first ten
ranks, and another 87 hits could be retrieved between ranks 11
and 20. This provides an overall retrieval rate of 91% among
the top fraction of the list, demonstrating that the similarity
searches were able to identify the majority of hits at low rank
numbers.

Furthermore, we were interested in determining to what extent
similarity scores between identical search queries and hits
deviate from their ideal value of 1.0. Such deviations can occur

Figure 2. Searching in combinatorial chemistry space. The chemistry
space of the virtual FE library contains a large number of combinatorial
library protocols. Only a small portion of this space is covered by the
real FE collection of synthesized compounds. Virtual screening with
FTrees-FS allows us to search the much larger virtual FE library
chemistry space.
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due to possible mismatches of atom or bond types between the
feature trees of query and hit. For example, the bond type of an
amide group is expected to be “amide”, whereas the relevant
acid and amine bonds in the fragment space are defined as
“single”. During the similarity search the amide bond type of a
given amide search query and the generated solution will not
be identical, thus resulting in a slight decrease of the similarity
value from the ideal score. The distribution of similarity scores
of the hits found in the validation showed that 1375 out of 1418
hits (97%) in the first ten ranks exhibit similarity scores of 0.95
or above. This verifies that the majority of hits come very close
to their ideal similarity score value of 1.0.

Application of the Chemistry Fragment Space. After we
successfully demonstrated that the chemistry fragment space is
capable of generating valid product structures from their
associated combinatorial library protocols, we embarked on an
application to assess the coverage of druglike chemical space
represented by this fragment space. We approached this task
by selecting a broad range of known drugs from the WDI and
tested if similar molecules could be found in the fragment space.
First, the WDI database (version 2004)61 was filtered by
applying a few simple rules: organic filter (only molecules
containing H, C, N, O, P, S, F, Cl, Br, and I atom types), rule-
of-5 compliant, number of rings 1–4, maximum ring size 8,
number of rotatable bonds less than 9. This was followed by a
subset selection based on maximum diversity using Pipeline
Pilot63 FCFP_4 fingerprints which resulted in a representative
subset of 1661 compounds. Similar to the validation procedure
above, each of these WDI molecules served as query for FTrees-
FS similarity searches. This time, only the top-ranked solution
with highest similarity to the input query was taken into
consideration, together with its similarity score and associated
reaction protocol.

In order to be of practical relevance, a computational search
procedure must have reasonable response times. Figure 3 shows
the distribution of compute times across the 1661 searches. For
the majority of queries (90%), the search time was below 20
min while using only a single processor machine (Intel Xeon
3.4 GHz, Red Hat Linux Enterprise). For 65% of the queries,
the similarity search took even less than 10 min. This is a
remarkable result, considering the size of the fragment search
space comprises about 1012 theoretically possible product
molecules. Note that a hypothetical search in the corresponding

product space would take more than a month, assuming that it
is possible to carry out each individual similarity calculation in
just a microsecond. For certain WDI queries, the search time
was significantly longer (>60 min). Such query structures (see
Figure 3) were typically larger in size, less druglike, and in
general showed a higher degree of complexity (high molecular
weight, many functional groups, large number of rotatable
bonds, complex ring systems). This is directly associated with
an increase in compute time for such query molecules and can
be explained by the underlying dynamic search algorithm of
FTrees-FS. For each similarity search a lookup table needs to
be dynamically generated to compare the query feature tree and
all feature tree fragments from the fragment space. Since this
lookup table represents the central data structure of the search
algorithm, a larger similarity table generated by more complex
query molecules directly leads to longer search times.

In the following step, the diversity of the synthetic chemistries
identified during the similarity searches was analyzed. We
wanted to make sure that the solutions generated from the
FTrees-FS search algorithm covered a reasonable distribution
of different reaction protocols. For example, search results that
were largely dominated by only a few simple reactions such as
amide bond formation with acids and amines would not be
satisfying to a user who is interested in applying a broad range
of potentially suitable reaction protocols to arrive at similar
compounds. The frequency distribution of different reaction
protocols retrieved for the solutions across the 1661 searches
showed that about half (173 of 358; 48%) of the reaction
protocols included in the fragment space were employed at least
once to generate the top-ranked molecule. The most frequently
occurring reaction protocols were as follows: reductive amina-
tions; amide and sulfonamide formations; ether and ester
formations; alkylation reactions with amines; nucleophilic
aromatic substitution reactions; aryl-aryl (Suzuki) couplings;
and various heteroaromatic ring formation reactions. Interest-
ingly, the most frequently appearing protocol by far found in
151 searches was the reductive amination reaction. We want to
emphasize that for the 358 protocols included in the fragment
space there is inherently a certain degree of overlap and
similarity in terms of their underlying synthetic chemistries,
which explains why not all reaction protocols were employed.
Also, we focused only on the top-ranked solutions; in a more
realistic application scenario, hundreds or thousands of top-
ranking solutions from a similarity search would be generated
and analyzed for different reaction protocols among those
products.

Next, in order to assess the coverage of druglike chemical
space, we tested how similar the solutions were compared to
their respective WDI queries. In Figure 4, the histogram shows
the distribution of similarity scores of the 1661 queries. (Note
that due to the nature of the feature tree descriptor the similarity
scores from FTrees-FS are generally higher than similarity
values derived from more classical descriptors like Daylight or
Pipeline Pilot fingerprints. Therefore, the scores should not be
compared directly to each other.) Lower similarity scores (<0.9)
indicate that no product close in chemical structure could be
generated from the fragment space. Products with scores in the
medium range (0.9–0.95) usually exhibit a high degree of
similarity in certain parts of the query. High similarity scores
(>0.95) indicate that the search was able to find an analogue
to the query, differing only in some minor features and
topologies. At the extreme, even structures identical to the search
query have been reproduced. After visual inspection of many
generated structures at various levels of similarity we considered

Figure 3. Distribution of compute times across the 1661 WDI query
searches. For the majority of queries (90%), the search time was under
20 min while using a single processor machine. For only a few, more
complex, query structures the search time tended to be longer (>60
min).
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the similarity score of 0.9 as a cutoff for finding a compound
with evident similarity to a given query structure. From the 1661
WDI queries performed, 1514 structures showed a similarity
score of >0.9, which corresponds to a coverage rate of 91%.
This respectable and promising result led us to the conclusion
that the generated fragment space covers a broad range of
druglike chemical space and is capable of generating new
compounds and compound series relevant for drug design.

Various examples of query molecules and their corresponding
closest product structure generated from the fragment space
grouped by similarity level (low, medium, high) are displayed
in Figure 5. In the first group of cases with lower similarity
(<0.9), the query structures were less druglike in general (Figure
5a). Many of them contained complex ring systems which are
not necessarily expected in the more druglike fragment space,
therefore making it almost impossible for the similarity search
program to generate any closely related product structures. For
instance, compound 1 contains a complex dibenzoquinolizinium
system with four rings fused together.64 The closest product
found in the fragment space (similarity score 0.85) is the
quinolinyl-aminoquinazoline derivative 2.65,66 The four-ring
system of 1 is split into two separate two-ring systems with an
amino group as a linker, replacing the quaternary amine from
the query. In another example, the similarity search of search
query 3 resulted in compound 4 (similarity score 0.87) where
the tricyclic dihydrophenazine scaffold of the query is replaced
by an indole ring connected to an aminobenzyl substituent.67–69

In addition, only the methyl ester portion of the carboxylic acid
methyl ester group of 3 was retained in 4.

The next group of examples with solutions in the medium
similarity range (0.9–0.95) contains products that are signifi-
cantly closer to the query, often with structural deviations only
in parts of the molecule (Figure 5b). Within this category there
is the highest likelihood of finding potential lead-hopping
candidates. For instance, the similarity search of 5 revealed the
replacement of the central pyrroloindole scaffold by an indanyl
piperazine ring in 6 (similarity score 0.918), thus preserving
the basic amine present in both scaffolds.70–72 Using search
query 7 resulted in hit compound 8 (similarity score 0.935)
where the phenothiazine heterocycle is replaced by a phenylin-
dole scaffold.73,74 The dimethylaminopropyl linker of 7, which
is important for activity, is fully retained in 8. In another
example, the central ketone group of 9 is substituted in 10 by
an amide bond linker (similarity score 0.949).75 Except for the

two halogen substituents, the search was able to regenerate the
identical quinazolinone heterocycle.

The last category of solutions with high similarity (>0.95)
shows analogues that are very close compared to their queries
(Figure 5c). As an example, the similarity search of 11 resulted
in compounds that were almost identical to the query.76 Among
the top 500 solutions, the hit compounds 12-15 (similarity
scores 0.95–0.98) were found, which are all known ligands
binding to the same class of biogenic amine GPCRs.77–80 The
central carbamate group of query 11 was changed into a
carboxylic ester or ether functionality. In the case of 15, the
diethylaminoethyl group of the query is replaced and the basic
amine is bridged by a piperidine group to the rest of the
molecule.

Interestingly, during the searches we also found numerous
cases where the identical structure could be regenerated from
the fragment space. For instance, the identical matching structure
of compound 16 (Figure 6) was retrieved from the fragment
space with a similarity score of 0.999 (see above for an
explanation of slight deviations).81 Using this last example, we
further investigated whether our approach could provide quick
and easy access to different synthetic chemistries based on a
solution list for a given query. To this end, we retrieved a
number of top-ranking products and checked their associated
library protocols and their underlying synthetic reaction schemes.
In particular, for the example WDI query 16 we analyzed the
first 500 solutions and grouped them by their reaction protocols.
Figure 6 shows the top-scoring molecule for each of the different
reaction protocols. The top-ranked product 17 is structurally
identical to the query, as mentioned before, and contains a
sulfonylurea functional group formed during the synthetic
reaction. On rank four, compound 18 is the first product from
a different reaction protocol to synthesize sulfonamides.82 The
similarity to the sulfonylurea query 16 structure is preserved
by including the amide functionality into the seven-membered
lactam ring of 18. Still very close to the query, on rank ten the
first product 19 from the group of sulfonimides is retrieved.83,84

The only difference between the query and this compound is
the removal of one amino group next to the query cyclohexane
ring, changing the sulfonylurea functional group into a sulfon-
imide analogue. Finally, another sulfonamide analogue 20 from
a different reaction protocol is found on rank 50.85 In this case,
a methylene linker group was inserted between the sulfonamide
and amide portion of 16, transforming the sulfonylurea group

Figure 4. Similarity score distribution of the top ranking hits found for the WDI queries. 91% of the hits (1514 of 1661) showed a similarity score
of >0.9, indicating that in most cases moderately to highly similar products compared to the query structures were identified.
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into a sulfonamide, both with a different chemistry protocol.
This example nicely shows that by examining the various
reaction protocols captured in the solution list it is possible to
explore different synthetic chemistries for essentially the same
target.

Scaffold Hopping in Target Classes. One of the key
applications using the fragment space approach is to provide

novel library design ideas for tasks such as HTS hit follow-up
or scaffold hopping from a given active molecule (e.g., singleton
compound, patent literature compound) to other attractive series
which show activity for the same target. Therefore, it was of
great importance to us to successfully demonstrate cases of
scaffold hopping from one lead series of a given target class to
another series of the same target family. We chose the serotonin

Figure 5. Examples of top-ranking solutions from the WDI queries found by the fragment space at (a) low (<0.9), (b) medium (0.9–0.95), and
(c) high (>0.95) similarity levels. The WDI drug name or CAS registration number of the queries and obtained hits are shown together with the
FTrees-FS similarity scores.

Figure 6. Examples of top-ranking solutions based on the WDI query 16, highlighting the ability of the method to identify multiple synthetic
chemistries to arrive at quite similar products. Different reaction protocols to synthesize sulfonylureas, sulfonimides, and sulfonamide products
were retrieved. The CAS registration numbers of the obtained products are shown together with the FTrees-FS similarity scores and rank order in
the solution list.
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5-HT3 receptor as an example target class. The 5-HT3 receptor
subtype has been implicated in many brain functions. Since the
stimulation by serotonin contributes to the sensation of nausea
and vomiting, antagonists of this receptor exhibit antiemetic
effects. For this study, a data set of 270 5-HT3 antagonists were
extracted from the Prous Integrity database.86 In addition, the
two representative drugs 21 and 22, which have been on the
market since the early 1990s, were selected and used as search
queries for FTrees-FS similarity searches in our fragment
space.87,88 To validate that other active compounds against the
receptor could be identified, we examined the top 1000 solutions
retrieved for each query to determine if any of them were
identical to one of the 270 5-HT3 antagonists from the data
set. Figure 7 shows the solutions from the FTrees-FS searches
that were among the 270 known 5-HT3 antagonists. Aside from
those eight products with identical structures to query molecules
in the data set, many additional compounds were generated
which showed close similarity to one of the known 5-HT3
antagonists. Naturally, some of the more interesting active hits
are not published and documented as active in the literature.
Unfortunately, for that reason we cannot disclose the structures
of these hits.

The similarity scores of the solutions depicted in Figure 7
range from 0.887 to 0.971, indicating a medium to high
similarity compared to the query. Remarkably, the scaffolds of
all solutions as well as their underlying chemistries are quite
distinct to those of the query structures, which underscores the
strength of the feature tree descriptor in scaffold hopping. It is
interesting to note that both queriessalthough relatively similar
to each othersunveiled solutions that are rather different from
each other. The first two hits 23 and 24 that are most similar to
query 21 have a quinoline and isoquinoline ring, respectively,

replacing the indole scaffold of 21.89 The query’s ester
functionality bridging the azabicyclic tropanyl ring system is
substituted by an ether oxygen. Hence, in addition to modifying
the scaffold a change in the underlying synthetic access has
been identified (ester vs ether chemistry). The ester group of
21 has been replaced by an urea group in 25, leading to another
synthetic route (ester vs urea chemistry).90 Furthermore, the
bicyclic tropanyl ring of 21 was slightly altered to an azabicy-
clooctanyl group in 25. In case of compound 26, the tropanyl
group of the query was replaced by a dimethyl amino piperidine
substituent, at the same time transforming the ester linker to an
amide (ester vs amide chemistry).91 Using 22 as a query revealed
distinct solutions with variations of the query’s indazole scaffold.
The structure of 27 shows a benzimidazole ring, whereas 28
contains a pyrrazolopyridine heterocycle instead.92,93 In the case
of solutions 29 and 30, the indazole scaffold of query 22 is
replaced by an oxobenzimidazole and indole ring, respectively.94,95

At the same time, the synthetic access to the products compared
to the query differs (amide to urea chemistry). The observation
that most of the hits in Figure 7 do not replace the azabicyclic
tropanyl ring in both queries is due to the fact that almost all
of the 5-HT3 antagonists in the data set contain this very
distinctive ring system. As mentioned before, other interesting
solutions revealed by the similarity searches, including different
scaffolds of the tropanyl ring, are not published in the literature
and hence cannot be disclosed.

Next, we were interested to see if 2D similarity methods using
established and routinely used descriptors such as Daylight36

(DY) or Pipeline Pilot63 (PP) FCFP_4 fingerprints are also in
principle capable of retrieving the above identified hits with
sufficiently high similarity. For such 2D fingerprints, it is
generally accepted that molecules with Tanimoto similarity of

Figure 7. Examples of hits with known 5-HT3 antagonistic activity found in the fragment space. The two 5-HT3 antagonists 21 and 22 were used
as search queries. The Prous Science Integrity registry numbers of the hits are listed together with their FTrees-FS similarity scores. For comparison,
the Tanimoto similarities using Daylight (DY) and Pipeline Pilot (PP) FCFP_4 fingerprints are shown in italics. The various synthetic reaction
protocols identified by 21 are indicated in parentheses.
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0.7 and higher are considered similar to each other.96,97 Using
21 as query, the Tanimoto similarity values of the four hits in
Figure 7 ranged from 0.376 to 0.516 (DY) and from 0.177 to
0.362 (PP). The similarities of hits found for query 22 ranged
from 0.407 to 0.618 (DY) and from 0.380 to 0.542 (PP). The
overall average pairwise similarity between all eight hits was
0.438 (DY) and 0.342 (PP). All values are significantly below
the similarity threshold of 0.7, indicating that the hits identified
by the FTrees-FS searches would have not been found by
standard 2D similarity searches using Daylight or Pipeline Pilot
fingerprints. Also, we want to emphasize again that with these
standard 2D similarity methods it is not possible to perform
searches in a combinatorial chemistry space without exhaustive
enumeration of the products, and searching within a 1012 product
chemistry space would be practically impossible.

In summary, the above examples describing scaffold hopping
in the same target class demonstrate that by examining the
generated solutions from the FTrees-FS similarity searches it
is possible to find potentially novel leads with distinct scaffolds
that cannot be found by standard 2D similarity methods.
Together with the reaction protocols associated with the
identified hits, different synthetic chemistries can be explored
allowing the user to select the most appropriate reaction
protocols for a given task.

Materials and Methods

Encoding Combinatorial Libraries. Real synthetic combina-
torial chemistry differs in many ways from its corresponding in
silico representation. As an example, Figure 8 shows the synthetic
reaction scheme for a combinatorial library to form amide products
starting from carboxylic acids and primary or secondary amines as
monomers. A conversion is necessary to turn this reaction into a
fragment space, thereby making it accessible to FTrees-FS searches.
The synthetic reaction scheme can be encoded as a virtual reaction
by clipping the functional groups involved in the reaction from the
monomers and replacing them with attachment points, also termed
linker atoms or linkers. The linker atoms are identified by their
labels, in the example shown as Z1 and Z2. At the same time, a
so-called core fragment is created that connects the clipped
monomers. In the exemplified reaction, a carbonyl group with two
attachment points R1 and R2 represents the core fragment. The
combinatorial library products are formed by connecting the R linker
atoms from the core fragment and the Z linkers from the clipped
monomers that are compatible to each other (i.e., R1 to Z1 and R2
to Z2). Two compatible linker atoms are connected by forming a
bond between the respective neighbor atoms of the two linkers.
The linker atoms themselves are eliminated as the bond is closed.
In the case of the amide formation reaction, identical library
products are enumerated by following the combination rules of the
virtual reaction scheme (Figure 8).

This mechanism of describing the enumeration of a virtual
reaction can be applied to any type of real combinatorial library.
The synthetic reaction scheme is translated into a virtual reaction,
which consists of one or more core fragments holding the R linker

atoms, and a set of clipped monomers containing the Z-labeled
linkers (Figure 9). A list of compatibility rules defines which linker
atoms can be connected. In general, R and Z linkers with identical
numbers of the same virtual reaction are compatible (R1 - Z1, R2 -
Z2, . . ., Rn - Zn). For the subsequent FTrees-FS searches of such
libraries it is a prerequisite that all R and Z linker atoms involved in
the virtual reaction are in a terminal position, i.e. they can only be
connected to one neighboring atom. Furthermore, any ring closure,
replacement, removal of protecting groups, and any other mechanism
occurring in real synthetic reactions that cannot be directly translated
into a virtual reaction scheme must be performed in a preprocessing
step (see the Computational Appendix for more details).

Generating Chemistry Fragment Spaces. To facilitate the
encoding process of combinatorial libraries into chemistry fragment
spaces, the toolkit CoLibri was developed. It allows the handling
of large numbers of compounds or fragments and can be used to
perform analyses and manipulations of the stored virtual molecules.
It is also capable of storing and manipulating linker compatibility
rules for valid fragment couplings. Chemistry spaces generated by
CoLibri can be directly used by FTrees-FS. A high-level overview
of the workflow for preparing a chemistry fragment space from a
collection of combinatorial libraries, its connection to CoLibri, and
the subsequent FTrees-FS searches is given in Figure 10.

We have applied CoLibri to build a chemistry fragment space
using in-house FE library protocols. For this purpose a compre-
hensive collection of 358 validated, high-speed synthetic reaction
protocols has been selected that are suitable for combinatorial
chemistry libraries. A set of 138 two-, 202 three-, and 18 four-
component reactions with a wide variety of reaction chemistries
was chosen to maximize the structural diversity of the projected

Figure 8. Original synthetic reaction scheme of a combinatorial library
(a) is converted to a virtual reaction scheme (b) consisting of a core
fragment and monomers A and B. The resulting product structures in
both reaction schemes are identical.

Figure 9. Every synthetic reaction can be translated into a virtual
reaction scheme with core fragments (X, Y) and a set of clipped
monomers (A, B, C). The products of the combinatorial library are
formed by a set of compatibility rules defining which linker types can
be connected to each other (R1 - Z1, R2 - Z2, etc).

Figure 10. High-level overview of the workflow to generate a fragment
space from a collection of combinatorial libraries and subsequent
FTrees-FS searches. White boxes represent data input and output. Gray
boxes and arrows indicate the data and processing steps of CoLibri.
Black boxes and arrows relate to the actual FTrees-FS application. Note
that the generation of a fragment space needs to be performed only
once, while the searches based on such a fragment space can be
continually performed. (See the Computational Appendix for more
details.)
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chemistry space. Theoretically, if all 358 library protocols were
fully enumerated it would result in more than 1012 possible virtual
product structures. Clearly, this number exceeds the capability of
any computational methodology operating in product space. In the
Computational Appendix we illustrate in more detail how the in-
house chemistry fragment space was generated. In addition, the
functionality of the CoLibri software to compile large numbers of
combinatorial libraries into manageable and searchable fragment
spaces is provided.

Conclusions

A combinatorial chemistry space based on large numbers of
validated FE library protocols was generated with the software
tool CoLibri. This fragment space can be efficiently and
exhaustively searched using the similarity search program
FTrees-FS. The search results is a set of virtual compounds that
are synthetically accessible by one or more of the existing library
reaction protocols. Various validation experiments confirmed
that the generated chemistry fragment space correctly defines
trillions (1012) of possible virtual product structures.

FTrees-FS was used to search within this fragment space
based on a sizable number of query molecules taken from the
WDI. The majority of these searches took less than 20 min on
a single PC. The search results clearly indicate that the
combinatorial chemistry space covers a broad range of druglike
chemical space. In addition to generating new compounds
relevant for drug design, it can also identify similar products
with different synthetic chemistries. This allows the user to select
the reaction protocol most suitable for a given task.

Finally, we demonstrated on the basis of a set of known
5-HT3 antagonists, using two marketed drugs for this target as
queries, that it is possible to find novel leads with distinct
scaffolds and different chemistries, thus allowing scaffold
hopping from one compound to another attractive series active
against the same target class.

Computational Appendix

Generation of In-House Chemistry Fragment Space. In a
first step, each of the 358 protocols was translated into a virtual
reaction scheme consisting of a unique core fragment and a list
of reaction monomers in the form of clipped monomer frag-
ments, as illustrated for the amide reaction example (see Figure
8). In general, two-component reactions always have one central
core fragment, whereas three- and four-component reactions can
consist of two or more core fragments. In case of the monomers,
either two (A, B), three (A, B, C), or four (A, B, C, D) separate
monomer lists are available for their respective two-, three-,
and four-component reactions. The connecting reaction partners
of the core fragments and monomers are labeled by their R and
Z linker atoms, respectively, with matching numbers on both
sides (R1 - Z1, R2 - Z2, etc.).

Next, the core fragments and monomer lists for each protocol
were converted into SMILES98 files. The originally Rn- and
Zn-labeled linker atoms were uniformly renamed by taking
advantage of the SMILES mass specification [m]. In this context,
the compatible linker pairs R1 and Z1 translate to [1*], R2 and
Z2 to [2*], and so forth.

The following crucial step for generating a valid fragment
space was to analyze the virtual reaction scheme to determine
if any preprocessing steps are necessary. The two major
instances that require preprocessing are ring-closure reactions
and the occurrence of bridged (i.e., nonterminal) linker atoms,
as described further below. Careful analysis of the 358 virtual
reaction protocols allowed us to classify them into four groups:
146 protocols fulfilled the requirements of converting them into

a fragment space without applying any preprocessing steps; 169
protocols revealed bridged linker atoms; 22 protocols were ring-
closure reactions; and 21 protocols contained both bridged linker
atoms and ring-closure formations. The latter three groups of
reaction protocols all require preprocessing steps to make them
compatible for the fragment space. Bridged linker atoms need
to be shifted to terminal positions by applying certain clipping
operations, and ring-closure reactions are partially enumerated
to form the ring.

As an example of preprocessing, Figure 11 shows a reaction
containing bridged linker atoms. Linker [3*] (mass label notation
for R3) of monomer A is placed inside the six-membered ring.
To move this bridged linker out of the ring into a terminal
position the nitrogen from the core fragment can be shifted into
the ring of monomer A. In CoLibri, this modification is
accomplished by applying clipping instructions: the relevant
substructure to be modified is captured by a SMARTS query,
followed by a transformation of the original fragment via a
SMIRKS expression.36,99 In the exemplified reaction the two
necessary transformation steps are to shift the nitrogen into the
ring of monomer A and then remove it from the core fragment.
The first clipping instruction (Figure 11a) identifies linker [3*]
with two anchor atoms of any type (left side) and replaces it

Figure 11. Example of preprocessing a reaction containing bridged
linker atoms. Two necessary transformation steps are necessary to shift
the nitrogen into the ring of monomer A and remove it from the core
fragment: (a) identify linker [3*] with two anchor atoms of any type
and replace it with a nitrogen atom with the now terminal linker [3*]
attached to it while keeping the original two anchoring atoms untouched;
(b) search for carboxamide substructure with a terminal linker [3*] and
cleave the amide bond by inserting a dot between the carbonyl group
and the nitrogen atom.

Figure 12. Example of preprocessing a reaction containing a ring
formation as part of its reaction scheme. When the linker atoms [2*]
and [3*] of monomer A and the corresponding core fragment are
combined, they form a new ring. All variants of monomer A and the
core fragment would need to be enumerated as part of the preprocessing
step in order to generate all possible variants of the newly formed ring.
Hence this step is called partial ring enumeration.

2476 Journal of Medicinal Chemistry, 2008, Vol. 51, No. 8 Boehm et al.



with a nitrogen atom with the now terminal linker [3*] attached
to it while keeping the original two anchoring atoms untouched
(right side). The second expression (Figure 11b) searches for a
carboxamide substructure with a terminal linker [3*] attached
to the nitrogen (left side). The amide bond is cleaved by inserting
a dot between the carbonyl group and the nitrogen atom, and
an additional new linker [3*] is directly attached to the carbonyl
group (right side). CoLibri later automatically removes the
separated nitrogen atom formed as an intermediate byproduct
during the clipping process.

Figure 12 illustrates an example protocol that contains a ring
formation as part of its reaction scheme. Linker atoms [2*] and
[3*] of monomers A (phenyl) and one of the core fragments
(furan) are combined to form the benzofuran ring. Since ring
closures cannot be handled by the FTrees-FS search algorithm,
monomers A and the core fragment must be partially enumerated
as part of the preprocessing routine. For this task, CoLibri
provides functionality to select user-specified subsets of frag-
ments and enumerates them according to the corresponding
compatibility rules. The original fragments are then replaced
by the partially enumerated fragments, together with a modified
set of compatibility rules. In the example shown in Figure 12
the original fragments of monomer A are replaced by the
partially enumerated benzofuran fragments with one linker atom
[1*] left. During the FTrees-FS search, this linker will be
combined with the remaining core fragment (ethyl group),
following the compatibility rules of the modified virtual reaction
scheme.

Protocols containing both a ring-closure step and bridged
linker atoms have to be preprocessed twice. First, fragments
forming the ring are identified and partially enumerated in order
to obtain a new set of modified fragments. In a second step,
bridged linker atoms of those modified fragments are processed
as described above to shift them into a terminal position.

After modification of all reaction protocols requiring prepro-
cessing, a single fragment lookup table was generated. During
this step, all participating fragments from the 358 reaction
protocols including their monomer and associated protocol
names were collected. The fragment database consists of
approximately 1.4 million fragments and serves as a lookup table
during the postprocessing of search results (see below for details
on postprocessing). Since this lookup table contains identical
fragments from several protocols, CoLibri was used to remove
any existing redundancy. All unique fragments represented in
the entire generated fragment collection were identified, and
new unified linkers required for nonredundant storage were
created. This way, the original 1.4 million fragments were
reduced to 89268 unique fragments and 7371 unified linker
types. In a final step, the nonredundant fragment collection was
converted into a fragment space file which serves as input to
the FTrees-FS similarity search program. The Corina
program100,101 was used to convert the fragment collection from
SMILES notation to a MOL2 file required by FTrees-FS. For
this purpose, the “dummies“ (-i dummies) and “mass to label”
(-o m2l) options from Corina were used to copy the isotopic
mass labels given in the SMILES input file into the correspond-
ing atom name field in the MOL2 file. This way, for example,
a linker type [1*] is converted to the “R1” linker atom. A
modified Corina version was provided to us which is capable
of handling isotopic mass labels with up to six digits instead of
just three (this feature is now standard for Corina versions 3.4
and newer).101 The total computing time of CoLibri covering
all the steps to generate the final fragment space was about 12 h
on a single processor (Intel Xeon 3.4 GHz, Red Hat Linux

Enterprise). The majority of the compute time was used to
identify and retrieve the unique fragments and to unify the linker
types.

Functionality of CoLibri. The functionality of CoLibri that
is necessary to compile a larger number of combinatorial
libraries into a manageable and searchable fragment space
consists of five components: (1) a mechanism to store fragments,
identify duplicates, and select a unique representative; (2)
functions to perform modifications to molecules; (3) a data
structure to store and modify the compatibility of unique
fragments; (4) import and export capabilities for different file
formats; and (5) a postprocessing routine to relate back to the
original input data.

Fragment Identification and Storage (1). CoLibri represents
each fragment using a hashcode102 for quick reference and a
unique SMILES (USMILES) string98 to capture the compound
in a condensed form. The rationale for using both representations
simultaneously is that the hashcode is better suited for storing
and retrieving processes as it can be directly used as an address
in a storage array. However, the hashcode cannot be used to
regenerate the corresponding molecule. The USMILES, on the
other hand, is a compressed representation of the molecule
allowing storage of millions of molecules in memory, which
can serve as input for numerous in silico screening operations.
A fairly condensed representation without duplicates is required
as the number of fragments to be represented can grow
substantially. In our experiments, we found that in a redundant
representation up to 25 times as many molecules would need
to be considered. This is not surprising since monomers like
amines, aldehydes or carboxylic acids are commonly used in
numerous parallel reaction protocols. Currently, CoLibri is
capable of handling up to a few hundred thousand fragments
and keeping them in memory, which is essential for rapid
duplicate identification and removal. CoLibri stores each input
fragment in a lookup table connecting the unique representation
together with the location of the original input. This reference
is necessary to allow specific annotations to the fragment, for
example, an in-house registry number or the associated reaction
protocol.

Fragment Manipulation (2). As we outlined above, there
are certain restrictions to the way fragments can be represented
and combined in a virtual reaction scheme applicable to FTrees-
FS searches. For example, virtual reactions containing fragments
with bridged (i.e., nonterminal) linker atoms cannot be processed
directly but require a preceding modification step. According
to the compatibility rules explained before, every linker must
be located in a terminal position with only one neighboring
atom. Such cases are preprocessed by adding one atom from
the side chain of the reaction partner to the fragment containing
the bridged linker (usually a ring system) and simultaneously
removing it from the donating side chain (see Figure 11). In
order to facilitate these types of transformations in an automated
fashion, CoLibri provides mechanisms for subgraph matching
and replacement. The user specifies in a reaction transforming
expression the substructure to be modified as a SMARTS query,
followed by the SMIRKS pattern of the replacement group.36,99

Other examples that cannot be represented directly but instead
must be handled in two consecutive steps are ring-closure
reactions. In a preprocessing step, the two (or more) fragments
that form the ring must be connected according to the corre-
sponding compatibility rules (see Figure 12). If this involves
only two individual fragments, then just one fragment containing
the closed ring is created. More generally, there may be multiple
variations in the fragments forming the ring. In these cases, a
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partial enumeration is performed involving only the fragments
participating in the ring formation according to their connection
rules. This permits the generation of a new set of fragments
that contain all the ring closures. Subsequently, the original ring-
forming fragments as well as the connection rules defining the
ring closure need to be removed. Finally, in the second step
the newly created fragments can be combined as usual following
the compatibility rules of the (modified) virtual reaction scheme
of the combinatorial library.

Fragment Compatibility Handling (3). Since CoLibri keeps
all fragments and their corresponding linker atoms in memory,
a single compatibility matrix (R linkers vs Z linkers) is created
in order to facilitate the book-keeping of all the combination
rules implied in the different virtual reactions. As an example,
the combinatorial library illustrated in Figure 9 consists of three
components (monomers A, B, C) and two core fragments,
resulting in eight linker types (R1 to R4 and Z1 to Z4). The
simplistic rule, stating that linker atoms with identical numbers
within the same reaction are compatible, translates to the few
corresponding entries in the compatibility matrix. However, by
adding more and more protocols the number of linkers increases.
Since fragments occur in multiple protocols, more entries appear
in certain cells of the matrix indicating such multiple compat-
ibilities. Note that with two partially overlapping monomer lists
A and B from two different protocols the monomers need to be
treated as three subsets for nonredundant storage: monomers A
without B (A\B), monomers B without A (B\A), and the
intersection of monomers A and B (A ∩ B). While the first two
monomer subsets may require only one linker type each, the
latter overlapping subset requires a third linker type which is
compatible with both core fragments of the respective two
protocols. Due to this effect, the number of linkers may become
quite large.

Import and Export of Fragment Spaces (4). The two major
tools capable of searching fragment spaces, FTrees-FS47 and
FlexNovo,103 utilize essentially the same syntax. It consists of
a file with all fragments containing the linker atoms, and another
file storing the compatibility matrix. One difference is that
FlexNovo requires 3D conformations of the molecules, requiring
the specification of bond lengths and angles for the combination
of fragments. CoLibri is able to export fragment spaces in both
flavors. In terms of input options, fragments can either be
provided as SD, SMILES, or MOL2 files. As mentioned
previously, CoLibri utilizes internally a USMILES representa-
tion. In the case of FlexNovo, 3D coordinates are required which
can be calculated on-the-fly using Corina.100,101

Postprocessing of Output (5). In addition to the molecular
structures of the resulting search hits, it is often desirable that
this output can be mapped back to the original input data. This
allows the user to retrieve information such as reaction protocol
or in-house registry numbers associated with the output molecule
and to embed this functionality seamlessly into existing work-
flows. For this purpose, as previously mentioned, CoLibri stores
all original input data by reference in a lookup table. The name
of a particular virtual product structure found in the fragment
space is represented as concatenation of hashcodes of the
combined fragments. By identifying the unique core fragment
of the virtual product, which is linked to the reaction protocol,
CoLibri can determine the original monomer names in the
lookup table by mapping them to the hashcodes of the virtual
product (see Figure 10). This way it is possible to identify the
specific combinatorial library protocol and monomers that are
required to form the particular virtual product structure at hand.

A further postprocessing step needs to be applied to the
preliminary hit list to filter out all solutions that are not complete
product structures because they have been early terminated
during the fragment space search. The similarity search algo-
rithm of FTrees-FS itself is not able to detect if a virtual product
represents a fully enumerated structure of a particular combi-
natorial library protocol. It will only combine fragments
according to the underlying compatibility rules of the fragment
space, until a virtual product with the highest possible similarity
against a given query molecule is found. By chance, this virtual
product may be incomplete; for example, in a three-component
reaction the core fragment may only combine with two of the
three required monomer fragments, hence forming a partially
enumerated product. In such cases, the apparently incomplete
solution needs to be eliminated from the final output hit list. In
FTrees-FS this is achieved by terminating all unsatisfied linkers
in the virtual products with a potassium (K) atom, which is
otherwise not occurring in druglike molecules. The preliminary
list of virtual products can easily be filtered by CoLibri to
exclude all solutions containing a potassium atom, since these
represent only incomplete virtual product structures.
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